Image courtesy en.wikipedia.org
Understandably, people were pretty much done with the plant, and outside of the occasional burst of color in springtime gardens, the Tulip carried on growing under the radar. That is, until a group of materials scientists out of the Delft University of Technology researching ultra-strong materials decided to take another look at the flower that had so fascinated their forebears.
“We had been working with minerals for so long, trying to find a way to strengthen steel,” says Delft University of Technology researcher Koenraad Van Tonder, “but we hit a dead end. The breakthrough came when I bought a bunch of what I thought were ordinary tulips for my girlfriend to apologize for forgetting our anniversary. She threw them at me and stomped them with her feet, but we were both surprised to see that they were unharmed.”
Image courtesy www.zastavki.com
Van Tonder brought the tulips to the lab, where the team worked with specialists to analyze the plant. It turned out that Van Tonder had purchased a tulip called “Tulipa fortis” and known among tulip aficionados for its hardiness. The team discovered a unique cellular arrangement within the leaves along with two heretofore unknown phytochemicals, which they believe are responsible for the Tulip’s amazing strength.
Image © David Spears
Van Tonder and his team dried the leaves and pulverized them, then added hydrochloric acid to the powder. Placing the acid-powder mixture under tremendous heat and pressure, they were able to effect the formation of polymers. The tulip plastic they produced proved to be easy to work with. “We found we could extrude the tulip polymer matrix into long chains, which could then be woven into cables,” says Van Tonder, “we are testing the cables now, but the results have been shocking. This is strong stuff.”
Using a single 1/4″ diameter woven tulip cable hooked up to a rig, the team was able to lift a grand piano. They then used two cables tied with a slip knot to tow Van Tonder’s car out of the graduate student parking lot and over to a mechanic. “The battery in my Yugo had died and I couldn’t afford to have it towed,” says Van Tonder, “but since we’ve discovered this amazing new material, I’m thinking of upgrading to a Fiat.”
The researchers are still testing the material, but early results indicate that the plastic is extremely stable, fire-resistant, and it appears not to deform in any way when subjected to changes in temperature. It’s stronger and lighter than steel, and can be molded, rotocast, and extruded into complex forms. When it comes to market, this Tulip-based plastic will revolutionize the construction industry. I think I see more tulip mania on the horizon!
I’ve filed Tulip Plastic under wood.
Cited:
Koenraad Van Tonder. Interview. 03/31/11. Delft University of Technology.
]]>